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Lecture 13 

I'd like to start our consideration of the second law of thermodynamics.  There are 

limitations to the information that the first law gives us.  The first law tells us that certain 

processes are impossible, the ones which do not conserve energy.  However, it does not tell us 

the answer to a very important question: which of the processes that are possible will occur 

spontaneously, i.e., without doing work on the system.  It is the second law that determines 

which processes are spontaneous and which are not. 

In order to address this broader subject, we’re going to start with a narrower question.  The 

question is “What is it that controls the efficiency of a process?”  In particular, we are interested 

in the efficiency of devices that take in energy in the form of heat, and convert it to work, so called 

heat engines.  The pioneers of thermodynamics were immensely practical people who were 

concerned with issues such as efficiency in boring cannons or getting the most work out of an 

engine.  The model developed to study the work done by a heat engine, the Carnot cycle, is not 

only still practical (it can still be used to determine the maximum efficiency of the engines in our 

cars or of electrical generators), but instructive.  We will find that the considerations that allow us 

to determine the most efficient conditions for operation of a heat engine lead to the second law of 

thermodynamics as well. 

A heat engine works by drawing heat from a source at high temperature, converting 

some of it to work, and then dumping the remaining heat energy into a low temperature sink.  

In the 19th century, Sadi Carnot, a French engineer, developed a thermodynamic cycle that allows 

us to figure out the most efficient conditions for operating such an engine.  The engine requires 

some kind of "working fluid" which is usually a gas.  

Carnot's cycle consists of four steps, all of which are performed reversibly.  In the first 
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step, the gas is placed in thermal contact with a heat source at T1, the high temperature, and is 

expanded isothermally and reversibly from state A to state B.  In the course of this expansion, 

the work done on the system is w1 and the system absorbs heat q1 from the heat reservoir.  In the 

second, the gas is reversibly and adiabatically expanded from B to C, and does work w2 on the 

system.  Since this second step is adiabatic, q = 0.  In the third step, the system is put in thermal 

contact with a heat sink at temperature T2, the low temperature, and is isothermally and 

reversibly compressed from state C to state D.  The work done on the system is w3 and the heat 

released to the sink is q3.  Finally, in the fourth step, the system is adiabatically compressed 

from state D to our initial state, state A.  The work done on the system is w4, and for this step 

again, the heat is zero.  

 

Figure 1This figure comes from the following website: https://courses.lumenlearning.com/physics/chapter/15-4-carnots-perfect-
heat-engine-the-second-law-of-thermodynamics-restated/ In this figure Th = T1, and Tc = T2 

 The energy changes for the four steps are 

∆U1 = q1 + w1 

https://courses.lumenlearning.com/physics/chapter/15-4-carnots-perfect-heat-engine-the-second-law-of-thermodynamics-restated/
https://courses.lumenlearning.com/physics/chapter/15-4-carnots-perfect-heat-engine-the-second-law-of-thermodynamics-restated/
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∆U2 = w2 

∆U3 = q3 + w3 and  

  ∆U4 = w4. 

When we complete the four steps, we have completed a cycle, since we are back in our initial state.  

WHAT WILL ∆U FOR THE WHOLE CYCLE BE?  [Zero] We will find that for all state functions, their 

change for a cyclic process will always be zero, since the initial and final states are the same.  The 

energy change for the cycle is also given by the sum of the energy changes for the four steps, so 

we can write 

( ) ( )1 3 1 2 3 4 0cy cy cyU q q w w w w q w∆ = + + + + + = + = . 

This tells us that the work done by a Carnot cycle is equal to the difference between the heat 

absorbed from the reservoir, and the heat deposited in the sink.   

As I said earlier, Carnot was interested in the efficiency of heat engines.  The efficiency of 

such an engine is defined as the ratio of the work done by the engine divided by the heat 

absorbed, i.e., the fraction of the absorbed energy that is converted to work.  This is expressed 

quantitatively as 3cy 1

1 1

- +q qw= =
q q

ε .  The reason for the negative sign is our convention that w is 

the work done on the system, and -w is the work done by the system.  Since Carnot was interested 

in the work the system did, he had to use -w in the equation for the efficiency.  Note that in this 

equation q1 + q3 ≤ q1, since q1 is the energy brought into the system as heat and is a positive 

number, and q3 is the energy released from the system as heat and is a negative number.  Therefore 

0 ≤ ε ≤ 1.  We can see from this equation that there are two ways to improve the efficiency of a 

heat engine.  One is to increase the amount of heat absorbed at the high temperature reservoir 
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(make q1 large) the other is to decrease the amount of heat released at the low temperature sink 

(make q3 small).  If it were possible to reduce the heat released to the sink to zero, then our engine 

would be perfectly efficient. 

How do we change the amount of heat absorbed in these two steps?  Let’s see by calculating 

ε for an ideal gas.  In step one, the isothermal reversible expansion at T1,  

∆U = q1 + w1 = q1  - nRT1 ln Vb/Va. 

We've already shown that for an ideal gas U is constant during an isothermal process, so we can 

now write q1 = -w1 = nRT1 ln Vb/Va.  For step 3, the isothermal reversible compression at T2, we 

can use the same reasoning to obtain q3 = -w3 = nRT2 ln Vd/Vc = -nRT2 ln Vc/Vd.  The sum q1 + q3 

is therefore given by  

1 1 23 ln lnb c

a d

V Vq nRT -nRTq
V V

+ =  

We can simplify this further if we note that Vb and Vc are connected by an adiabatic expansion, 

and Vd  and Va are connected by an adiabatic compression.  Earlier we showed that for an adiabatic 

path,  

( T
T

) ( V
V

)f

i

i

f

-1= γ  

Hence,( T
T

)= (V
V

) for step 2 and ( T
T

)= (V
V

) for step 4.2

1

b

c

-1 1

2

d

a

-1γ γ  

If we set these two equations equal we get  

(V
V

) ( V
V

) or (V
V

)= ( V
V

)b

c

-1 a

d

-1 b

c

a

d

γ γ= , 

which implies in turn that c b

d a

V V
V V

= .  This means that we can rewrite our expression for the total 
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heat as 

1 3 1 2 ln b

a

Vq q = nR(T T )
V

+ −  

Since q1 = nRT1 ln Vb/Va, for an ideal gas, 1 2 2

1 1

1T T T
T T

ε −
= = − . In other words, to change the heat 

absorbed, we merely change the difference in temperature between the heat source and the heat 

sink. So we see that we can also say that the way to increase the efficiency of an engine is to 

increase the temperature of the heat source, or decrease the temperature at the heat sink. 

Let’s look at an example:  Suppose a heat engine absorbs 400J of heat from a high 

temperature source at 450K and has its heat sink maintained at 350K.  Calculate 1) ε, the efficiency 

of the engine, 2) -w the work performed, and 3) q3, the amount of heat lost to the low temperature 

reservoir.   

We begin by remembering that 

2
1 2

1
1

1

wT= 1- = - ; = 400J,T = 450K,T = 350K.q
qT

ε  

We can get the answer to our first question merely by plugging in numbers to our equation.  Thus 

ε = 1 - 350K/450K = .222, so under these conditions the engine is only 22% efficient.  To get the 

answer to the second question we rearrange our equation to give  

-wnet = q1 ε = (.222) 400J = 88.8J. 

Finally to answer the third question we need to use the first law of thermodynamics.  What is the 

first law? [∆U = q + w]  What is the total q for this process?  [q = q1 + q3]  Therefore we can rewrite 

our first law as  

∆U = q1 + q3 + w. 
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What is ∆U for this process? [0, initial state and final state for the process are identical]  Therefore 

we can solve to get q3 = -w - q1 = 88.8 J - 400 J = -312.2J. Why is q3 negative? [Because it 

represents energy flowing from the system] 

 There are two modern devices that are based on using work to reverse the direction of heat 

flow, i.e. to transfer heat from a low temperature source to a high temperature “sink”.  These are 

the heat pump and the refrigerator.  Because the goals of these devices, although based on similar 

principles, are different from that of a heat engine, the efficiency is defined differently for these 

devices.  For the refrigerator we have, 

3 2

1 2
fridge

q T
w T T

ε = =
−

, 

where q3 is the energy transferred in the form of heat from the low temperature source, the inside 

of the refrigerator.  For the heat pump we have 

ε heat pump
q
w

T
T T

=
−

=
−

1 1

1 2

, 

where -q1 is the energy in the form of heat transferred from the outside of the house which is at a 

lower temperature to the inside of the house which is at a higher temperature.  There are two 

important distinctions between these equations and those for the Carnot Cycle.  First, both of these 

processes can have efficiencies substantially higher than one.  In other words, for both processes 

the heat transferred can greatly exceed the work done on the system.  In addition, note that unlike 

the Carnot engine, the efficiency of both devices decreases as the difference between the high and 

low temperatures increases.  These observations explain both the advantages and disadvantages of 

heat pumps as heating sources for homes.  They can be very efficient, and therefore very cost 

effective.  On the other hand, in places where the outside temperature is substantially below room 
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temperature, the efficiency of traditional heat pumps decreases rapidly.  

 However, this does not mean that the efficiency of heat pumps is only accessible to those 

of us living in the South.  A new version of the heat pump which combines geothermal and heat 

pump technologies works by burying the low temperature coils at a depth below the frost layer.  

Because the ground beyond a depth of about six feet stays at a temperature equal to the average 

yearly temperature for the area, the difference in temperature between the source and the sink is 

kept reasonably low, and efficiencies stay high even in the coldest weather. 
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Lectures 14-15 

When we were calculating the efficiency of a Carnot engine, we came up with two different 

equations.  The first was 31

1

+q q=
q

ε  and the second was ε = T - T
T

1 2

1
.  Although we used the ideal 

gas law to derive this second equation, we will find that it is just as general as our first equation.  

Therefore, we can equate these two formulas, to obtain 3 1 21

11

+q q -T T=
q T

.  A little manipulation 

gives us a new equation, 31

1 2

qq + = 0
T T

.  This equation implies the existence of a new state function.  

To see why let’s add up the quantities qrev/T for each of the steps in our Carnot cycle.  FOR THE 

FIRST STEP, WHAT IS Q?  So qrev/T is q1/T1.  FOR THE SECOND STEP, WHAT IS Q?  So qrev/T is zero for 

the second step. FOR THE THIRD STEP WHAT IS Q? So qrev/T for the third step is q3/T2.  WHAT IS THE 

VALUE OF Q FOR THE FOURTH STEP? Therefore if we add up qrev/T for the cycle we get q1/T1 + q3/T2, 

which our new equation tells us is zero.  WHAT WAS THE VALUE OF ∆U FOR THE CYCLE?  [Zero] 

WHY?  [Because the process was cyclic, and the change in any state function for a cyclic process 

is zero.]  Therefore, since the change in the quantity qrev/T is zero for our cyclic process, we can 

conclude that we have a new state function. We shall call this new state function the entropy, S, 

and will initially define it as ∆S = qrev/T.  If we have an infinitesimal heat flow we write this in 

differential form as dS = dqrev/T.  So you see that our consideration of the Carnot Cycle has led to 

a new state function, the entropy.   

What is important about this new state function, entropy?  To understand the importance 

of this function, we turn once again to the efficiency of the Carnot Cycle.  Remember that in the 

Carnot Cycle all the steps are carried out reversibly. Earlier we stated, in a crude way, that the 
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reversible work is the maximum work that can be done (we will prove this in a couple of weeks).  

Since ε ≡ -w/q1, this implies that for any given processes, εrev ≥ ε.  We can rewrite this as 

3 31,rev ,rev 1

1,rev 1

+q q +q q
q q

≥ .  However, our work with the Carnot Cycle showed us that the reversible 

efficiency could also be written as ε = T - T
T

1 2

1
, so we can rewrite our inequality as 31 2 1

1 1

+q q-T T
qT

≥

, which in a few steps can be rewritten as 31

1 2

qq0 +
T T

≥ .  For a differential heat flow this sum 

becomes, 31

1 2

dqdq0 +
T T

≥ .  This is a version of the Clausius Theorem.  Since the theorem refers to 

cyclic processes, its most general form involves a cyclic integral, 0dq
T

≤∫ .  If you haven't seen a 

cyclic integral before don't worry. It’s just an integral where the upper and lower limits of 

integration are the same number.  For a state function it will always be zero.  For a path function 

it will depend on the specific path.   

What can we learn from this cyclic integral?  We know from the Carnot cycle that when 

the entire cyclic process is reversible the sum will be zero.  If any process is irreversible the 

sum will be less than zero.  Finally, under no circumstances will the sum ever be greater than 

zero.  Therefore, the value of this cyclic integral is that it allows us to distinguish between 

reversible and irreversible processes.  Why do we care about when a process is reversible or 

irreversible?  Let’s think about what reversibility means.  A process has to occur slowly enough 

that the system and surroundings are in equilibrium throughout.  It turns out that in order for a 

process to be truly reversible, it has to occur infinitely slowly. In other words, it is going so slowly 

that we can say that the process is not spontaneous.  Irreversible processes will occur more quickly, 
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and are therefore spontaneous processes.  Therefore, we can say that this inequality is 0 for 

reversible processes, and less than zero for spontaneous processes.  There are no processes for 

which the sum is positive.   

This is a new result, because the first law only tells us that for a process to occur it must 

satisfy energy conservation.  Our new result tells us something about when a process will occur 

spontaneously.  It is important here to understand the technical meaning of the word spontaneous.  

In thermodynamics, to say that a process is spontaneous means that it will proceed without work 

being done on the system.  As an example, heat flows from a hot source to a cold sink without 

doing any work on the system (it just happens).  However, in order to move heat from a cold source 

to a hot sink (like in a refrigerator) work needs to be done, so we conclude that the process is not 

spontaneous. 

The problem with the Clausius inequality is that it depends on calculation of a path 

function, heat.  It would be much easier if we could predict spontaneity using a state function, 

whose changes would be much easier to calculate.  It turns out that we can do this using the entropy.  

So, all we need now to complete our development of the second law is to show the relationship of 

our new state function, the entropy, to spontaneity.  Our interpretation of the Clausius Theorem is 

the key.  We begin by considering the following cyclic process: 

State 1                 →                   State 2                 →              State 1 
  irreversible         reversible 

According to the Clausius Theorem we have 
2 1

1 2
revdqdq + < 0

T T∫ ∫ .  The second term is dS, the 

differential of the entropy.  Thus the equation now becomes 
2 1

1 2

dq + dS < 0
T∫ ∫ .  Reversing the limits 

on the second integral and adding the entropy term to both sides gives us 
2 2

1 1

dqdqdS > or dS >
T T∫ ∫



 
 

86 

.  If we remember that dq/T = dS under reversible conditions, this finally becomes dS ≥ dq/T, our 

most general and useful version of the second law.  We have three different cases here.  The first 

is dS = dq/T.  This occurs only for reversible processes.  The second is dS > dq/T.  This occurs for 

irreversible or spontaneous processes.  The third, dS < dq/T never occurs. 

To gain even more physical insight, let’s consider the entropy of an isolated system.  For 

this case dq/T will be zero.  Our three cases now become dS = 0 for reversible processes, dS > 0 

for spontaneous processes, and if dS < 0 the process is impossible and will not occur.   

Now consider the universe.  Since it contains everything, it is by definition an isolated 

system.  Therefore we can state our result as dSuniv = 0 for a reversible process, while dSuniv > 0 

for a spontaneous process.  This is why the second law is sometimes stated as “The entropy of 

the universe is always increasing.” 

A common physical interpretation of entropy is that entropy corresponds to increasing 

disorder.  While crude, this physical idea will later help us in our development of the third law.  In 

statistical mechanics, the entropy is most simply calculated using a formulation derived by Ludwig 

Boltzmann, lnS k w=  .  In this equation, S is the absolute entropy, k is Boltzmann’s constant, 

R/N0 = 1.38 x 10-23 J K-1, and w is the degeneracy of the system.  The degeneracy of a system is 

the number of energetically equivalent configurations at a given energy.  It makes sense that 

disorder would increase with the degeneracy, because the higher the degeneracy, the more widely 

the system would be distributed among possible configurations.  This is not unlike a deck of cards 

being more widely distributed when 52 card pickup is played in a large living room than when it 

is played in a small closet. 

Another useful version of the second law is obtained if we divide the universe into system 
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and surroundings.  Then dSuniv = dSsys + dSsurr.  This means that our second law may also be written 

dSsys + dSsurr ≥ 0.  We will find that this form of the second law will be the one that we use most 

often. 

Before we go on to specific examples, let’s do a quick recap.  By using the Carnot Cycle, 

we introduced a new state function called the entropy. This state function has the property that if 

the change in its value for a process = 0 for system + surroundings, the process is reversible.  If 

the change in its value for a process is positive for system + surroundings, the process is 

spontaneous. 

Now we have to figure out how to calculate entropy changes.  Notice that our definition of 

the entropy is dS = dqrev/T.  This means that in order to calculate the entropy change between two 

states, we need to find a reversible path between the two states.  Let’s look at the calculation of 

some entropies. 

We'll demonstrate the calculation of entropies and the second law by considering the 

entropy of the isothermal reversible expansion of an ideal gas. Our calculation of ∆S for isothermal 

cases is simplified since T is constant and we can pull it out of the integral. 

2 2

1 1

1rev rev
revgas

dq qS dq
T T T

∆ = = =∫ ∫  

Remember that for an isothermal process in an ideal gas, dU = CV dT = 0.  Remember also that 

∆U = q + w.  Therefore, for an isothermal process in an ideal gas, q = -w.  Since for the isothermal 

reversible expansion of an ideal gas w = -nRT ln(V2/V1), qrev = nRT ln(V2/V1).  Therefore ∆Sgas = 

qrev /T = nR ln(V2/V1).  Note that if V2>V1, an expansion, the entropy of the system increases, and 

if V2<V1, a compression, the entropy of the system decreases.  However, the second law says that 

the entropy of the universe should be zero for a reversible process.  WHY ISN'T OUR RESULT 0? 
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[Universe = system + surroundings, must include ∆Ssurroundings.] 

Let’s figure out how to calculate ∆Ssurroundings.  Suppose that in an isothermal reversible 

process the system absorbs an amount of heat qrev.  The entropy change for the system is simply 

∆S = qrev/T.  Where did the heat that is transferred into the system come from? [Surroundings]  

Therefore, the heat flow for the surroundings will be given by -qrev.  Now what about the 

temperature of the surroundings?  Remember that in a reversible process, the critical variables for 

system and surroundings need to be in equilibrium.  Since the critical variable for heat transfer is 

T, the temperature of the system and the surroundings must be equal.  Therefore ∆Ssurr = -qrev/T.  

Since ∆SUniverse = ∆S = ∆Ssys + ∆Ssurr, we have ∆S = qrev/T - qrev/T = 0, which agrees with the 

second law. 

Now let’s consider an isothermal irreversible expansion of an ideal gas that connects the 

same two states as our reversible process. Since S is a state function ∆Ssys is independent of path, 

so ∆Ssys = nR ln(V2/V1).  How does the entropy of the irreversible expansion differ from the 

reversible expansion?  First of all, since the same two states of the system are involved, ∆Ssys is 

the same as for our reversible case.  However, ∆Ssurr will differ.  Suppose that the expansion is 

against pex = 0.  Then w = 0 and since ∆T = 0, ∆U = 0 and q = 0.  This means the qsurr = 0 for the 

irreversible process, and therefore ∆Ssurr = 0.  Note that we cannot use the argument that entropy 

is a state function for the surroundings, because we do not know enough about the surroundings to 

define their state.  Taken together, our results mean that the overall entropy for the irreversible 

process is ∆S = ∆Ssys + ∆Ssurr = nR ln(V2/V1), which is > 0 if V2 > V1, i.e., if an expansion occurs.  

Therefore, isothermal irreversible expansions into vacuum are spontaneous processes.  However, 

if V2 < V1, i.e. if compression occurs, then ∆S < 0, and the process will not occur.  DOES THIS 
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LATTER STATEMENT MAKE PHYSICAL SENSE?  WHY? 

Let’s look at the entropy changes of a couple of other types of processes.  First let’s look 

at the entropy change associated with a phase transition.  Let’s start with our definition of entropy.  

Q:  HOW IS AN ENTROPY CHANGE DEFINED?  [dS = dqrev/T] To calculate dqrev, we postulate that the 

system is heated infinitely slowly.  Remember that because S is a state function, it doesn't matter 

whether the actual transition occurs infinitely slowly, because as long as the initial and final 

states are the same, ∆S will be the same.  Q:  NOW SUPPOSE THAT OUR PROCESS IS VAPORIZATION 

UNDER CONDITIONS OF CONSTANT PRESSURE.  WHAT IS DQ FOR THIS PROCESS? [dHvap] From our 

definition we have dS = dHvap/T, and since phase transitions are isothermal, this integrates to ∆Svap 

= ∆Hvap/T.  We can extend this result to all types of first order phase transition by writing ∆Strans = 

∆Htrans/Ttrans.  Note that ∆H of vaporization, of fusion and of sublimation are all positive, so for all 

three of these processes, ∆S will be greater than zero.  Q: CAN ANYONE GIVE ME A QUALITATIVE 

EXPLANATION OF WHY MELTING A SOLID OR VAPORIZING A LIQUID ALWAYS RESULTS IN AN INCREASE 

OF ENTROPY? [Going from S to l or l to g results in an increase in disorder]   

You might guess that for most substances the increase in disorder going from a liquid to a 

gas would be about the same.  This is the essential content of Trouton's Rule, which states simply 

that the entropy of vaporization of most liquids is ≅ 85 J K-1 mol-1.  Since HS
T
∆

∆ =  for phase 

transitions, we can use Trouton’s rule to estimate the enthalpy of an unknown phase transition, or 

alternatively the transition temperature. 

Now let’s consider the entropy change due to heating.  Q: WHAT IS OUR DEFINITION FOR 

CHANGE IN ENTROPY? [ revdqS
T

∆ = ∫ ]  Q:  SAY THAT WE'RE AT CONSTANT PRESSURE.  WHAT IS 
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DQREV?  [dqrev = Cp dT] Combining these results yields the equation 

2

1

T
p

T

dTS = C T
.∆ ∫   

Q:  IF CP IS CONSTANT WHAT IS ∆S? [∆Sheating = Cp ln(T2/T1) at constant p] Q:  IF THE HEATING WERE 

DONE AT CONSTANT V WHAT WOULD DQREV BE? [CV dT] So for constant volume, we would have 

2

1

T

VT

dTS = C
T

.∆ ∫  

and for constant CV,  

2

1

lnheating v
TS C
T

 
∆ =  

 
 

These results are even more important because they can be rewritten as  

2 2

1 1
2 1 2 1

T T
p p

T T

dT dTS - S S SC CT T
= ⇒ = +∫ ∫  

This means that we can relate the entropies at any two temperatures, as long as we know Cp.  

Let’s do a couple of examples. 

Example:  What is ∆SH2O(g) when the water is heated from 110°C to 170°C at 1 atm 

pressure.  Cp(H2O(g)) = 33.58 J K-1 mol-1.  

We begin with the equation p
dTS C
T

∆ = ∫ .  Since we are not told otherwise, we assume 

that Cp is constant and integrate to get 2

1

lnheating v
TS C
T

 
∆ =  

 
 = 33.58 ln(443/383) = 48.87 J K-1  

mol-1. 

Example 2: What is ∆S(H2O) when water is heated from 50 °C to 170 °C at 1 atm.  

Cp(H2O(l) = 75.29 J K-1 mol-1.  Q:  CAN WE JUST USE THE EQUATION p
dTS C
T

∆ = ∫  FOR THIS 
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PROCESS? [No, phase transition occurs at 100 °C and 1 atm.]  Q:  WHAT IS THE HEAT CAPACITY AT 

A PHASE TRANSITION? [∞, Cp = ∆H/∆T = q/0]  So for this problem in order to calculate ∆S we need 

to break our calculation into three parts.  First we heat the water to the boiling point and calculate 

its entropy change.  WHAT WILL THE CHANGE IN ENTROPY BE FOR THIS PART OF THE PROCESS?  

373

1 2273
(p

dTS C H O(l))
T

∆ = ∫  

The second part of the process is to evaporate the liquid at the normal boiling point.  WHAT IS ∆S 

FOR THIS PART OF THE PROCESS? [∆S2 = ∆Hvap/373]  Finally we raise the temperature of the vapor 

from 100 °C to 170 °C.  THE ENTROPY FOR THIS PROCESS IS WHAT? 

443

3 2373 p
dTS = C (H O(g))
T

∆ ∫  

The total entropy change is the sum of the three component entropy changes, 

373 443vap
2 2323 373

( )) ( ( ))p p

HdT dTS C H O C H O g
T T T

∆
∆ = + +∫ ∫   

If we write this change in entropy as ∆S = S443 - S323, we can see that by considering the various 

phase transitions and with knowledge of all the heat capacities, that we should be able to calculate 

changes in entropy from temperatures as low as zero K.  For example, for H2O this calculation 

would be 

273 373

0 2 2 20 273 373
( ( )) ( ( )) ( ( ))

273 373
Tfus vap

T p p p

H HdT dT dTS S C H O s C H O l C H O g
T T T

∆ ∆
= + + + + +∫ ∫ ∫   

To determine an absolute value for the entropy (not surprisingly, called the absolute entropy) we 

only need to know the entropy at absolute 0.   

There is a problem in doing these calculations.  At temperatures below 10K, it is extremely 

difficult to measure heat capacities.  However, Debye and Einstein came up with a theory of heat 
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capacity that shows that for low temperatures Cp ∝ T3.  So to calculate the entropy from 0 to 10K 

we find the heat capacity at 10K and then use this equation of Einstein and Debye, which is called 

the Debye extrapolation.  The real power of the Debye calculation is that if we know Cp of a 

substance at 10 K, to a good approximation we also know the entropy at 10K.  For example, 

suppose the Cp(Ar, 10K) = 0.81 J K-1 mol-1.  What is ∆S from 0 to 10 K?  We use our previous 

result to write
10

10 0 0

pC dT
S S

T
− = ∫ .  Since the temperature is between 0 and 10K we use the Debye 

extrapolation to estimate the heat capacity, writing Cp = aT3, where a is a constant.  This yields 

3 310

10 0 0

T dT aTS S a .
T 3

− = =∫  

Since Cp(10) = a T3, S10 - S0 = 1/3 Cp(10) = .27 J K-1 mol-1. 

Now we have the tools to calculate any entropy relative to the entropy at 0 K.  It remains 

only to determine the value of the entropy at 0K.  First, I'd like to turn to a statistical definition 

of the entropy since I think it will help our understanding of 0K entropies.  We've already stated 

that entropy is related to disorder.  A gas is more disordered than a liquid and has higher entropy.  

A liquid is more disordered than a solid and has higher entropy.  Similarly, when we heat an object 

its disorder increases, because its atoms can move around more and therefore its entropy increases.  

In 1896, Ludwig Boltzmann came up with a quantitative expression for this relation of entropy to 

disorder by writing S = k ln w, where w is the degeneracy of the system at temperature T, and k 

= R/NA (NA is Avogadro’s number).  The degeneracy is approximately defined as the number 

of arrangements of a system at a given temperature.  Let’s look at the effect of temperature on 

this number of arrangements.  Say we have a gas of five particles in a volume V.  There are many 

different combinations of positions of these five particles within the volume V, therefore the 
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degeneracy w is high and S is high.  Now we lower the temperature and the gas of 5 particles 

condenses.  The particles are constricted in space, but still have many different configurations, 

since the condensed liquid, though constrained to the bottom of the container, can still flow. 

For this case w is smaller, so S is smaller.  Now we lower T again so that the liquid becomes a 

solid.  The degree of disorder of the solid is a matter of which particles are moving and how much.  

For this case w is still smaller and S is smaller yet.  As we continue to lower the  

 

 

 

temperature, fewer of the particles are able to move.  This continues until we reach absolute zero.  

For a perfect crystal at absolute zero there is only one configuration, w = 1 and since S = k ln W, 

S = 0.   

This is the essential content of the third law of thermodynamics, which states “The 

entropy of perfect crystals of all pure elements and compounds is zero at the absolute zero of 

temperature.”  Note that this law very specifically mentions perfect crystals.  What is a perfect 

crystal and what is an imperfect crystal?   

A perfect crystal is a regular arrangement of atoms or molecules with every particle in it’s 

assigned space.  Looking at a two-dimensional example, we see that as long as the atoms are  
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indistinguishable and don't move, there is only one configuration for this perfect crystal.  However, 

crystals sometimes form with imperfections, such as an atom missing from one of its sites.  This 

is one type of imperfect crystal.  We can see that with one atom missing there are several (in this 

case twelve) distinguishable configurations of the crystal, all with identical energies.  As an 

example here are three of the twelve configurations for this 11 atom crystal.  Since each of these  

 

 

 

 

 

distinguishable configurations has only one empty lattice site, the energies are the same.  In fact, 

a crystal of 1 mol of Ar, with a single missing atom has 6.023 x 1023 distinguishable configurations 

at 0K and therefore has a degeneracy w = 6.023 x 1023.  Since the statistical definition of entropy 

is S = k ln W, we have” 

S = 8.314J K mol
6.022x

6.022x =7.56x JK
− −

− −
1 1

23
23 22 1

10
10 10ln . 

 The real power of the third law is that since it defines an absolute zero of entropy, it means 

that unlike the energy and enthalpy, for which we can only calculate relative values, we can 

calculate absolute values for the entropy.  These absolute entropies are also called third law 

entropies. 

The standard third law entropy is defined as follows.  “The standard entropy of a 

substance, S°, is its entropy in its standard state at temperature T.” 

In addition, we can define a standard reaction entropy as 
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∆Srxn
0  = S°(products) - S°(reactants) 

If we use our formulation for a generalized reaction, the standard entropy of reaction becomes 

∆S = Srxn
J

J J
0 0∑ν   

For example in the reaction 

2 H2(g) + O2(g) → 2 H2O(l), at 275K ,  

the νJ's are -2, -1 and +2 respectively and  

∆S 2S H O l - 2S H g - S O grxn, ( ( )) ( ( )) ( ( ))275
0

275
0

2 275
0

2 275
0

2=  

These absolute entropies are readily obtained from tables, such as those in the CRC Handbook or 

those supplied by Atkins, DePaula and Keeler. 

One last entropy topic.  When we first talked about changes in energy, we obtained the 

equation dU = -pexdV + dq.  Notice that this equation consists of terms which are either difficult 

to measure (dq) or refer to the surroundings.  However, for a reversible process we can now 

develop an equation which describes the energy change in terms of internal variables only.  Our 

first step is to replace the work term with a reversible work term, which yields a familiar equation, 

dU = -pdV + dq.  Now remember that our definition of a change in entropy is dS = dqrev/T, which 

implies that dqrev = TdS.  Now our equation for the energy change becomes dU = -pdV + TdS.  

We've succeeded in writing our change in terms of internal variables only.  Note that even though 

the work term and the heat term are reversible, this equation can be used to calculate the change 

in energy for irreversible changes as well, as long as the initial and final states are the same as in 

the reversible case.  This equation is called the fundamental equation of thermodynamics, and 

has tremendous utility.  We will be exploiting it substantially from now on. 


